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Abstract

AI systems are being deployed to support human decision
making in high-stakes domains such as healthcare and crim-
inal justice. In many cases, the human and AI form a team,
in which the human makes decisions after reviewing the AI’s
inferences. A successful partnership requires that the human
develops insights into the performance of the AI system, in-
cluding its failures. We study the influence of updates to an
AI system in this setting. While updates can increase the
AI’s predictive performance, they may also lead to behav-
ioral changes that are at odds with the user’s prior experiences
and confidence in the AI’s inferences. We show that updates
that increase AI performance may actually hurt team perfor-
mance. We introduce the notion of the compatibility of an
AI update with prior user experience and present methods for
studying the role of compatibility in human-AI teams. Empir-
ical results on three high-stakes classification tasks show that
current machine learning algorithms do not produce compati-
ble updates. We propose a re-training objective to improve the
compatibility of an update by penalizing new errors. The ob-
jective offers full leverage of the performance/compatibility
tradeoff across different datasets, enabling more compatible
yet accurate updates.

Introduction
A promising opportunity in AI is developing systems that
can partner with people to accomplish tasks in ways that ex-
ceed the capabilities of either individually (Wang et al. 2016;
Kamar 2016; Gaur et al. 2016). We see many motivating ex-
amples: a doctor using a medical expert system (Wang et al.
2016), a judge advised by a recidivism predictor, or a driver
supervising a semi-autonomous vehicle. Indeed, economists
expect human-AI teams to handle many such tasks (Gown-
der et al. 2017). Despite rising interest, there is much to learn
about creating effective human-AI teams and what capabili-
ties AI systems should employ to be competent partners.

We study human-AI teams in decision-making settings
where a user takes action recommendations from an AI part-
ner for solving a complex task. The user considers the rec-
ommendation and, based on previous experience with the
system, decides to accept the suggested action or take a dif-
ferent action. We call this type of interaction AI-advised
human decision making. While there exist other important
forms of human-AI collaboration (including human-advised
AI decision making and more general collaborative decision

Figure 1: Schematized view of human-AI teams in the pres-
ence of AI updates. Human-AI teams perform better than
either alone, but when the AI is updated its behavior may vi-
olate human expectations. Even if updates increase the AI’s
individual performance, they may reduce team performance
by making mistakes in regions where humans have learned
to trust the AI.

making involving a mix of initiatives and emergent team be-
haviors), we focus on a specific interplay where the goal is to
create AI systems that recommend actions to assist humans
with decisions in high-stakes domains (Angwin et al. 2016;
Bayati et al. 2014). The motivation for AI-advised human
decision making comes from the fact that humans and ma-
chines have complementary strengths and abilities. While
both human experts and machine-learned models are not
perfect on a task like medical diagnosis or classifying ob-
jects in images, researchers have shown that their ideal com-
bination could significantly improve performance (Wang et
al. 2016; Kamar, Hacker, and Horvitz 2012). AI systems of-
fer added benefits by speeding up decision making when
humans can identify tasks where the AI can be trusted
and no more human effort is needed (Lasecki et al. 2012a;
2012b).

It might be expected that improvements in the perfor-
mance of AI systems lead to stronger team performance,
but, as with human groups, individual ability is only one of
many factors that affect team effectiveness (DeChurch and



Mesmer-Magnus 2010; Grosz 1996). Even in a simple col-
laboration scenario, in which an AI system assists a human
decision maker with predictions, the success of the team
hinges on the human correctly deciding when to follow the
recommendation of the AI system and when to override. Un-
less the particular domain and the interaction allows the hu-
man to validate the correctness of the machine recommenda-
tion efficiently and effectively, extracting benefits from col-
laboration with the AI system depends on the human devel-
oping insights (i.e., a mental model) of when to trust the AI
system with its recommendations. If the human mistakenly
trusts the AI system in regions where it is likely to err, catas-
trophic failures may occur. Human-AI teams become espe-
cially susceptible to such failures because of discrepancies
introduced by system updates that do not account for human
expectations. The following example and Figure 1 illustrate
this situation.

Example (PATIENT READMISSION). A doctor uses an AI
system that is 95% accurate at predicting whether a pa-
tient will be readmitted following their discharge to make
decisions about enlisting the patient in a supportive post-
discharge program. The special program is costly but
promises to reduce the likelihood of readmission. After a
year of interacting with the AI, the doctor develops a clear
mental model that suggests she can trust the AI-advised ac-
tions on elderly patients. In the meantime, the AI’s developer
trains and deploys a new 98% accurate classifier, which errs
on elderly patients. While the AI has improved by 3%, the
doctor is unaware of the new errors, and as a result of this
outdated mental model, takes the wrong actions for some el-
derly patients.

This example is motivated by real-world AI applications
for reducing patient readmissions and other costly outcomes
in healthcare (Bayati et al. 2014; Wiens, Guttag, and Horvitz
2016; Caruana et al. 2015), and motivates the need for re-
ducing the cost of disruption caused by updates that violate
users’ mental models. The problem with updates extends to
numerous AI-advised human decision-making settings; sim-
ilar challenges have been observed during over-the-air up-
dates in the Tesla autopilot (O’Cane 2018), and analogous
issues arise in a variety of other settings when AI services
being consumed by third-party applications, are updated.

Despite these problems, developers have almost exclu-
sively optimized for AI performance. Retraining techniques
largely ignore important details about human-AI teaming,
and the mental model that humans develop from interacting
with the system. The goal of this work is to make the human
factor a first-class consideration of AI updates. We make the
following contributions:

• We define the notion of compatibility of an AI update
with the user’s mental model created from past experi-
ence. We then propose a practical adjustment to current
ML (re)training algorithms — an additional differentiable
term to the logarithmic loss — that improves compatibil-
ity during updates, and allows developers to explore the
performance/compatibility tradeoff.

• We introduce an open-source experimental platform1 for
studying how people model the error boundary of an AI
teammate in the presence of updates for a an AI-advised
decision-making task. The platform exposes important
design factors (e.g., task complexity, reward, update type)
to the experimenter.

• Using the platform, we perform user studies showing that,
humans develop mental models of AI systems across dif-
ferent conditions, and that more accurate mental models
improve team performance. More importantly, we show
that updating an AI to increase accuracy, at the expense
of compatibility, may degrade team performance. More-
over, experiments on three high-stakes classification tasks
(recidivism prediction, in-hospital mortality prediction,
and credit-risk assessment) demonstrate that: (i) current
ML models are not inherently compatible, but (ii) flexi-
ble performance/compatibility tradeoffs can be effectively
achieved via a reformulated training objective.

AI-Advised Human Decision Making
In our studies, we focus on a simple, but common, model
of human-AI teamwork that abstracts many real-world set-
tings, e.g., a 30-day readmission classifier supporting a doc-
tor (Bayati et al. 2014), a recidivism predictor supporting
judges in courts (Angwin et al. 2016). In this setting, which
we call AI-advised human decision making, an AI system
provides a recommendation, but the human makes the final
decision. The team solves a sequence of tasks, repeating the
following cycle for each time, t.

S1: The environment provides an input, xt.

S2: The AI (possibly mistaken) suggests an action, h(xt).

S3: Based on this input, the human makes her decision, ut.

S4: The environment returns a reward, rt, which is a func-
tion of the user’s action, the (hidden) best action, and
other costs of the human’s decision (e.g., time taken).

While interacting over multiple tasks, the team receives re-
peated feedback about performance, which lets the human
learn when she can trust the AI’s answers. The cumulative
reward R over T cycles records the team’s performance.

Trust as a Human’s Mental Model of the AI
Cognitive psychology research shows that when people in-
teract with any complex system, they create a mental model,
which facilitates their use of the system (Norman 1988).
Just as for other automated systems, humans create a mental
model of AI agents (Kulesza et al. 2012). In AI-advised hu-
man decision making, valid mental models of the reliability
of the AI output improve collaboration by helping the user
to know when to trust the AI’s recommendation. A perfect
mental model of the AI system’s reliability could be har-
nessed to achieve the highest team performance. A simple
definition for such a model would be m : x → {T, F},
indicating which inputs the human trusted the AI to solve

1Available at https://github.com/gagb/caja



correctly. A more complex model might compute a proba-
bility and include additional arguments, such as the AI’s out-
put, h(x). In reality, mental models are not perfect (Norman
2014): users develop them through limited interaction with
the system, and people have cognitive limitations. Further-
more, different team members may have access to different
information about the situation. For example, a doctor may
know things about a patient that are missing from electronic
health records (e.g., an estimate of the patient’s compliance
with taking medications), while an AI system may have ac-
cess to the most recent results and trends in physiological
state that are not tracked by physicians. In summary, users
learn and evolve a model of an AI system’s competence over
the course of many interactions. In the experimental section,
we show that these models can greatly improve team perfor-
mance. Next, we study the problem of updating an AI system
within the context of AI-assisted human decision making,
and introduce the notion of compatibility.

Compatibility of Updates to Classifiers
Developers regularly update AI systems by training new
models with additional or higher-quality training data, or by
switching to an improved learning algorithm. Such updates
presumably improve the AI’s performance on a validation
set, but the patient readmission example highlights how this
is not always sufficient: updates can arbitrarily change the
AI’s error boundary, introduce new errors which violate user
expectations and decrease team performance.

In software engineering, an update is backward compat-
ible if the updated system can support legacy software. By
analogy, we define that an update to an AI component is lo-
cally compatible with a user’s mental model if it does not
introduce new errors and the user, even after the update, can
safely trust the AI’s recommendations.
Definition (LOCALLY-COMPATIBLE UPDATE). Let m(x)
denote a mental model that dictates the user’s trust of the
AI on input x. Let A(x, u) denote whether u is the appro-
priate action for input x. An update, h2, to a learned model,
h1, is locally compatible with m iff

∀x, [m(x) ∧A(x, h1(x))]⇒ A(x, h2(x))

In other words, an update is compatible only if, for every
input where the user trusts the AI and h1 recommends the
correct action, the updated model, h2, also recommends the
correct action. In the rest of this paper, we focus on situations
where a classifier’s predictions are actions. For instance, in
the patient readmission example, if a classifier predicts that
the patient will be readmitted in the next 30 days, the sug-
gested action from the classifier would be to include the pa-
tient in a special post-discharge program.

Globally Compatible Updates
When developers are building an AI system that is used by
many individuals, it may be too difficult to track individ-
ual mental models or to deploy different updated models
to different users. In this situation, an alternative to creat-
ing locally compatible updates, is a globally compatible up-
date. To make this notion precise, we observe that a devel-

oper who is updating a classifier with new training data goes
through the following steps:

1. Collect initial training data D1.
2. Train a model h1 on D1 and deploy h1.
3. Collect additional data to create D2, where D1 ⊂ D2.
4. Train h2 on D2.
5. If the performance of h2 is higher than h1, deploy h2.

Similar steps can be formulated for a model update where
the training data does not change (D2 = D1) but h2 belongs
to a different model class.
Definition (GLOBALLY-COMPATIBLE UPDATE). An up-
dated model, h2, is globally compatible with h1, iff

∀x,A(x, h(x))⇒ A(x, h2(x))

Note that a globally compatible update is locally compat-
ible for any mental model. While global compatibility is a
nice ideal, satisfying it for all instances is difficult in prac-
tice. More realistically, we seek to minimize the number of
errors made by h2’s that were not made by h1, since that will
hopefully minimize confusion among users. To make this
precise, we introduce the notion of a compatibility score.
Definition (COMPATIBILITY SCORE). The compatibility
score C of an update h2 to h1 is given by the fraction of
examples on which h1 recommends the correct action, h2
also recommends the correct action.

C(h1, h2) =
∑

xA(x, h1(x)) ·A(x, h2(x))∑
xA(x, h1(x))

(1)

If h2 introduces no new errors, C(h1, h2) will be 1. Con-
versely, if all the errors are new, the score will be 0.

Dissonance and Loss
To train classifiers, ML developers optimize for the predic-
tive performance of h2 by specifying, and minimizing, a
classification loss L that penalizes low performance. The
equation below shows the negative logarithmic loss (also
known as log loss or cross-entropy loss) for binary classi-
fication – a commonly used training objective in ML.

L(x, y, h2) = y · log p(h2(x))+ (1− y) · log(1− p(h2(x)))

Here, the probability p(h(x)) denotes the confidence of the
classifier that recommendation h(x) is true, while y is the
true label for x (i.e., A(x, y) = True). The negative log loss,
like many other loss functions in machine learning, depends
only on the true label and the confidence in prediction – it
ignores the previous versions of the classifier and, hence,
has no preference for compatibility. As a result, retraining
using different data can lead to very different hypotheses,
introduce new errors, and decrease the compatibility score.
To alleviate this problem, we define a new loss function Lc

expressed as the sum of classification loss and dissonance.
Definition (DISSONANCE). The dissonance D of h2 to h1
is a function D : x, y, h1, h2 → R that penalizes a low
compatibility score. Furthermore, D is differentiable.

D(x, y, h1, h2) = 1(h1(x) = y) · L(x, y, h2) (2)



Figure 2: Screenshot of the CAJA platform for studying
human-AI teams.

Recall that C(h1, h2) is high when both h1 and h2 are correct
(Eqn 1). Dissonance expresses the opposite notion: measur-
ing if h1 is correct (1 denotes an indicator function) and pe-
nalizing by the degree to which h2 is incorrect. Equation 3
defines the new loss.

Lc = L+ λc · D (3)

Here, λc encodes the relative weight of dissonance, con-
trolling the additional loss to be assigned to all new errors.
We refer to this version as new-error dissonance. Just as
with classification loss, there are other ways to realize dis-
sonance. We explored two alternatives, which we refer to as
imitation and strict imitation dissonance. Eqn 4 describes the
imitation dissonance which measures the log loss between
the prediction probabilities of h1 and h2:

D′(x, y, h1, h2) = L(x, h1, h2) (4)

Eqn 4 is used in model distillation (Ba and Caruana 2014;
Hinton, Vinyals, and Dean 2015), where the aim is to train
a shallower, less expensive model by imitating the proba-
bilities of larger, accurate model. Unfortunately, D′ has the
effect of nudging h2 to mimic h1’s mistakes as well as its
successes. Eqn 5 describes the strict imitation dissonance,
which follows a similar intuition but it only adds the log loss
between h1 and h2 when h1 is correct.

D′′(x, y, h1, h2) = 1(h1(x) = y) · L(x, h1, h2) (5)

Compared to dissonance, D, D′′ still puts a larger emphasis
on matching h1’s predictions (vs. the true labels, y), which
we worried would hurt accuracy. Our experiments (e.g., Fig-
ure 5) confirm this intuition and show the effect of varying
λc on the performance/compatibility tradeoff.

Platform for Studying Human-AI Teams
How might we study the impact of AI accuracy, updates,
compatibility, and mental models on the performance of AI-
advised human decision making teams? Ideally, we would

conduct user studies in real-world settings, varying parame-
ters like the length of interaction, task and AI complexity, re-
ward function, and the AI’s behavior. All human-subjects re-
search is challenging, but our setting poses special perplex-
ities. Testing in real settings reduces or removes our ability
to directly control the performance of the AI. Furthermore,
it may largely measure experts’ differing experience in the
domain, rather than their interactions with the AI. The im-
portance of mental models for team success varies among
domains and the interaction designed between the AI sys-
tem and humans. When humans do not have an easy way
to validate machine correctness, extracting value out of AI
assistance depends on the ability of the human developing a
mental model of the AI system.

To control for human expertise and the centrality of men-
tal modeling, we developed the CAJA platform, which sup-
ports parameterized user studies in an assembly line domain
that abstracts away the specifics of problem solving and fo-
cuses on understanding the effect of mental modeling on
team success. CAJA is designed such that no human is a task
expert (nor can they become one). In fact, the true label of
decision problems in the platform is randomly generated so
that people cannot learn how to solve the task. However, hu-
mans can learn when their AI assistant, Marvin, succeeds
and when Marvin errs. Alongside, the human has access to a
perfect problem-solving mechanism, which she can use (at
extra cost) when she does not trust Marvin.

Specifically, CAJA is a web-based game, whose goal is to
make classification decisions for a fixed number of box-like
objects. For each object, the team follows the steps S1-S4 to
decide whether the object is “defective” or not. In S1 a new
object appears (e.g., blue square), in S2 the AI recommends
a label (e.g., not-defective), in S3 the player chooses an ac-
tion (e.g., accept or reject the AI recommendation), and in S4
the UI returns a reward and increments the game score. The
objects are composed of many features, but only a subset of
them are made human-visible. For example, visual proper-
ties like shape, color, and size are visible, but the contents
are not. In contrast, the AI has access to all the features but
may make errors. At the beginning of the game, users have
no mental model of the AI’s error boundary. However, to
achieve high scores, they must learn a model using feedback
from step S4. Figure 2 shows a screenshot of the game at
step S3.

CAJA allows study designers to vary parameters, such as
the number of objects, number human-visible features, re-
ward function, AI accuracy, and complexity of perfect men-
tal model (number of clauses and literals in the error bound-
ary and stochasticity of errors). Further, it enables one to
study the effects of updates to AI by allowing changes to
these parameters at any time step. In the next section, we
use CAJA to answer various research questions.

Experiments
We present experiments and results in two parts. First, us-
ing our platform, we conduct user studies to understand
the impact of mental models and updates on team perfor-
mance. Second, we simulate updates for three real-world,
high-stakes domains and show how the retraining objective



Accept Compute
AI right $0.04 0

AI wrong -$0.16 0

Table 1: Reward matrix for the user studies. To mimic high-
stakes domains, penalty for mistakes is set to high.

enables an explorable tradeoff between compatibility and
performance that is not available in the original models.
User Studies. In user studies, we hired MTurk workers and
directed them to the CAJA platform.2 We informed them
of the purpose of the study and provided a set of simple
instructions to familiarize them with the task and the user
interface: form a team with an AI, named Marvin, and
label a set of 100 objects as “defective” or “not defective”.
Following AI-advised human decision making, to label an
object, a worker can either accept Marvin’s recommenda-
tion, which is initially correct 80% of the time, or use the
“compute” option, which is a surrogate for the human doing
the task herself perfectly but incurring an opportunity cost.
Table 1 summarizes the reward function used in our studies.
The matrix is designed in a way that it imitates a high-stakes
scenario, i.e., the monetary penalty for a wrong decision
is much higher than the reward for a correct decision. We
found this design choice to be a good incentive for workers
to learn and update their mental model on Marvin. Note
that the expected value of a pure strategy (e.g., always
“Compute” or always “Accept,” without considering the
likelihood of Marvin’s correctness) is zero. The only way
to get a higher score is by learning when to trust Marvin.
While the subjects are told Marvin’s accuracy and the
payoff matrix, they can only learn Marvin’s error boundary
gradually by playing the game. These design choices allow
us to study the impact of mental models while controlling
for human problem solving expertise — every player is able
to solve problems perfectly, at a fixed cost, using “compute.”

Q1: Do better mental models of AI lead to higher team per-
formance?
To answer this, we conducted human studies that measured
team performance across different conditions of complex-
ity of task and error boundary. For each condition, we hired
25 MTurk workers, and filtered spammers by deleting data
from workers in the bottom quartile. We varied the task
complexity by varying the number of human-visible fea-
tures. The complexity of error boundary f , expressed as a
logical formula, is varied by changing the number of con-
juncts and literals in f . For example, we tried one con-
juncts containing two literals, one conjunct with three lit-
erals, and two conjuncts with two literals. Since many fea-
tures can be used as literals, we chose them randomly to
create different but isomorphic error boundaries. For exam-
ple, worker A gets fA = (blue∩square) and worker B gets
fB = (red ∩ circle). Figure 3a shows that, for one con-
junct and two literals, team performance decreases with the

2Workers were paid on average $20/hr, over the minimum wage
in line with ethical guidelines for requesters (Dynamo 2017).

number of features. We observed a similar behavior for other
error boundaries (results omitted for space), and for the rest
of these studies we set the number of conjuncts to one. Fig-
ure 3a shows that, as the number of features increases, team
performance decreases because it becomes harder to create
a mental model.

Next, we conducted a study (Figure 3b) to understand the
impact of stochasticity in the error boundary on team perfor-
mance. Stochasticity is defined using two conditional prob-
abilities: P (err|f) and P (err|¬f). That is, the probability
of error if f is satisfied, and if it is not satisfied. To vary
stochasticity, we chose the following four pairs of probabili-
ties: (0.7, 0), (0.85, 0), (1.0, 0), and (0.85, 0.15). For the first
three pairs, the errors are “one-sided”: since P (err|¬f) is 0,
the classifier makes a mistake only if the formula is satisfied.
In the last pair, errors are “two-sided”: with a probability of
0.15, the classifier makes a mistake even if the formula is not
satisfied. We fix the number of features to three and the num-
ber of literals to two. Figure 3b shows that as errors become
more stochastic, it becomes harder to create a mental model,
deteriorating team performance. The y-axis shows the score
normalized by the score of the optimal policy because, as we
vary stochasticity, the optimal policy’s score changes.

Finally, in order to have a closer view of the quality of
the workers’ mental models, we ask them to self report
when they thought Marvin was wrong. We manually labeled
these reports as correct, partial, unsure, and wrong, without
looking at their team performance. The label denotes how
the worker’s mental model compared to the true error
boundary f . For example, correct denotes that the mental
model and f were the same, wrong denotes no match, par-
tial denotes an incomplete match, and unsure denotes that
the worker was skeptical of their mental model. Figure 3c
compares team performance on these groups. Workers with
the correct mental model score the highest, followed by
workers with a partially correct model. These observations
confirm that better mental models contribute positively to
team performance.

Q2: Do more compatible updates lead to higher team per-
formance than incompatible updates?
To study the impact of updates, we set the number of cycles
to 150, and at the 75th cycle, update the classifier to a ver-
sion that is 5% more accurate (80%→ 85%). Then, we di-
vide the participants into three groups: same error boundary,
compatible error boundary, and incompatible error bound-
ary. The same error boundary group receives an update im-
proving accuracy, but the error boundary is unchanged. For
the two other groups, the number of literals (features) in
the error boundary changes from two to three. The update
for the compatible error boundary group introduces no new
errors; for example, if before the update the error bound-
ary was blue ∩ square, after the update it may change to
small ∩ blue ∩ square. For the incompatible error bound-
ary group, the error boundary introduces new errors violat-
ing compatibility. Figure 4 summarizes our results. We also
show the performance of workers if no update was intro-
duced (dashed line). It uses the no-update setting from ex-
periments in Q1, and extrapolates from there assuming that
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Figure 3: (a) Team performance decreases as we increase the number of human-visible features. (b) Team performance de-
creases with the stochasticity of errors. The decrease is much higher for two-sided errors. (c) Better mental models result in
higher team performance. Wrong and Unsure mental models have the lowest performance.
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Figure 4: Team performance for different update settings.
Compatible updates improve team performance, while in-
compatible updates hurt team performance despite improve-
ments in AI accuracy.

the worker’s mental model is already stable at the 75th cy-
cle, meaning that the human-AI team has reached the maxi-
mum performance for the original setting and no further im-
provements are expected. The graph demonstrates two main
findings on the importance of compatibility. First, a more ac-
curate but incompatible classifier results in lower team per-
formance than a less accurate but compatible classifier (no
update). Second, compatible updates improve team perfor-
mance. Moreover, the figure shows different stages during
the interaction: the user learning the original error bound-
ary, team stabilizes, update causes disruption, and perfor-
mance stabilizes again. A central insight in the update stage
is that the incompatible error boundary condition sacrifices
the team score while workers have to relearn the new bound-
ary. This insight shows that compatible updates not only im-
prove team performance but they can also reduce the cost of
retraining users after deploying system updates.

Classifier Dataset ROC h1 ROC h2 C(h1, h2)
LR Recidivism 0.68 0.72 0.72

Credit Risk 0.72 0.77 0.66
Mortality 0.68 0.77 0.40

MLP Recidivism 0.59 0.73 0.53
Credit Risk 0.70 0.80 0.63
Mortality 0.71 0.84 0.76

Table 2: Although training on a superset of data increases
classifier performance, compatability can be suprisingly low.

Experiments with High-Stakes Domains
Datasets. To investigate whether a tradeoff exists be-
tween performance and compatibility of an update,
we simulate updates to classifiers for three domains:
recidivism prediction (Will a convict commit another
crime?)(Angwin et al. 2016), in-hospital mortality predic-
tion (Will a patient die in the hospital?) (Johnson et al. 2016;
Harutyunyan et al. 2017), and credit risk assessment (Will a
borrower fail to pay back?)3. We selected these high-stakes
domains to highlight the potential cost of mistakes caused
by incompatible updates in human-AI teams.

Q3: Do current ML classifiers produce compatible updates?
For this experiment, we first train a classifier h1 on 200
examples and note its performance. Next, we train another
classifier h2 on 5000 examples and note its performance and
compatibility score. We train both classifiers by minimizing
the negative log loss. Table 2 shows the performance (area
under ROC) and compatibility averaged over 500 runs for
logistic regression (LR) and multi-layer perceptron (MLP)
classifiers. We find that training h2 by just minimizing log
loss does not ensure compatibility. For example, for logistic
regression and the in-hospital mortality prediction task, the
compatibility score is as low as 40%. That is, 60% of the
instances where h1 was correct are now violated.

3https://community.fico.com/s/

explainable-machine-learning-challenge
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Figure 5: Performance vs. compatibility for a logistic regression and multi-layered perceptron classifiers. The reformulated
training objective (Lc) offers an explorable performance/compatibility tradeoff, generally more forgiving during the first half of
the curves. The training objective based on new-error dissonance performs the best, whereas the ones based on imitiation and
strict-imitation dissonance perform worse since they imitate probabilities of a less accurate, and less calibrated model (h1).

Q4: Does there exist a tradeoff between the performance
and the compatibility of an update to AI?
For Q4 (and Q5), we learn the second classifier h2 by
minimizing Lc. As Lc depends also on the first classifier,
we make its prediction available to the learner. We vary λc
and summarize the resulting performance and compatibility
scores across different datasets for the logistic regression
and multi-layer perceptron classifiers in Figure 5 and
for different definitions of dissonance (discussed in Q5).
The figure shows that there exists a tradeoff between
the performance of h2 and its compatibility to h1. This
tradeoff is generally more flexible (flat) in the first half
of the curves. This shows that, at the very least, one can
choose to train via Lc and deploy a more compatible update
without significant loss in accuracy. Although such updates
are not fully compatible, they might still be relevant to
be picked by the developer if the update is supported by
efficient explanation techniques that can help users to better
understand how the model has changed. In these cases, a
more compatible update would also reduce the effort of
user (re)training. In the second half, the tradeoff becomes
more evident. High compatibility can sacrifice predictive
performance. Look-up summaries similar to graphs shown
in Figure 5 are an insightful tool for ML developers that can
guide them select an accurate yet compatible model based
on the specific domain requirements.

Q5: What is the relative performance of the different disso-
nance functions?

Figure 5 compares the performance of the new-error disso-
nance function (D) with the imitation-based dissonances (D′

and D′′). As anticipated, D performs best on all three do-
mains. The definitions inspired by model distillation,D′ and
D′′, assume that h1 is calibrated, and more accurate. There-
fore, h2 needs to remain faithful to only the correct regions
of a less accurate model h1. If these assumptions are vio-
lated, h2 overfits to non-calibrated confidence scores of h1,
which hurts performance.

Discussion and Directions
The AI-assisted human decision-making problem assumes
that there are instances for which the AI is more efficient
(e.g., higher accuracy, faster, or low resource usage), and
the human can recognize when the AI is capable of doing
so. Earlier, we discussed that one way for humans to recog-
nize when to follow the AI’s recommendations is by cre-
ating mental models. However, depending on the domain
and the type of interaction design, the importance of men-
tal modeling for team performance may vary. For exam-
ple, if the human can quickly validate the correctness of
the recommendation, or the human expertise improves over
time to leave no room for machine contribution, then men-
tal modeling may not be needed. Otherwise, the accuracy
of the mental model limits team performance. Thus, com-
patibility of updates becomes an essential determinant of
team performance, and developers should factor it in sys-
tem design supported by guiding tools exploring the perfor-
mance/compatibility tradeoff.



Varying the value of λc results in numerous models on the
performance/compatibility spectrum. The decision to select
the appropriate model depends on several factors, including
the user ability to create a mental model, the cost of disrup-
tion, and whether there exist other alternative approaches for
minimizing disruption caused by updates. For example, if
the cost of disruption (both the cognitive cost and mistakes)
is high, then we may use a high value for λc. A more formal
approach would be to set λc algorithmically. For example, a
λc could be selected to maximize expected utility expressed
using a computational user model and future rewards.

A developer can use other complementary approaches to
minimize disruption caused by low compatibility. One ap-
proach is to retrain the user, for example, by leveraging
mechanisms from interpretable AI to explain the updated
model to users or to explain differences between h1 and
h2. However, this may not always be practical: (1) in prac-
tice, developers may push updates frequently, and since re-
training requires users additional time and effort, it may not
be practical to subject experts to repeated re-training; (2)
updates can arbitrarily change the decision boundary of a
classifier, and as a result, require the user to re-learn a large
number of changes; (3) re-training requires the developers
to create an effective curriculum or generate a change sum-
mary based on the update. It is often impossible to compute
such summaries in a human-interpretable way. For example,
explaining the changes to a self-driving car may require the
challenging task of mapping the feature representation used
by the car (myriad of sensor data) to human-interpretable
concepts. Nevertheless, backward compatibility does not
preclude retraining; these techniques are complementary to
each other. In fact, more compatible updates can be an effi-
cient mechanism to simplify the re-training process by min-
imizing the divergence between two models deployed con-
secutively. Yet another complementary approach is to share
the AI’s confidence in the prediction. Well-calibrated confi-
dence scores can help a user to decide when or how much
to trust the system. Unfortunately, confidence scores of ML
classifiers are often not calibrated (Nguyen, Yosinski, and
Clune 2015) or a meaningful confidence definition may not
exist due to the complexity of the task.

We formalized compatibility in terms of differences in
model recommendations before and after an update, inde-
pendent of mental models of users. An important future
direction is to develop computational models of how peo-
ple create and update mental models, and condition on the
personalized experiences and cognitive capabilities of each
user, drawing upon general findings about how people learn
about phenomena via observation (Reber 1989). While this
work distills trust as the essence of teamwork and presented
results are applicable to a variety of use cases, promising
extensions include developing blended studies in the real
world that combine both factors of human problem solving
and learned trust in AI.

Related Work
Prior seminal work explored the importance of mental mod-
els for achieving high performance in group work (Grosz
and Kraus 1999), human-system collaboration (Rouse et al.

1992), and interface design (Carroll and Olson 1988). Our
work builds upon these foundations and studies the problem
for AI-advised human decision making. Other work (Hoff
and Bashir 2015) highlights the connection between mental
models and trust in systems. While many “layers” of trust
exist, our work focuses on learned trust, which is built upon
context and past experiences (Marsh and Dibben 2003). Pre-
vious work (Zhou et al. 2017) investigated factors that affect
user-system trust, e.g., model uncertainty and cognitive load.
The platform proposed in this work enables human studies
that can analyze the effect of such factors.

The field of software engineering also considers the prob-
lem of backward compatibility, seeking to design compo-
nents that, after updates, remain compatible with a larger
software ecosystem (Bosch 2009; Spring 2005; Tsantilis
2009). Machine learning research has explored related no-
tions. Stability expresses the ability of a model to not sig-
nificantly change its predictions given small changes in the
training set (Bousquet and Elisseeff 2001). Consistency,
which has application in ML fairness, is a property of
smooth classifiers, which output similar predictions for sim-
ilar data points (Zhou et al. 2004). Catastrophic forgetting is
an anomalous behavior of neural network models that occurs
when they are sequentially trained to perform multiple tasks
and forget to solve earlier tasks over time (Kirkpatrick et al.
2017). While these concepts are fundamental for analyzing
changing trends in continuously learned models, they do not
consider human-AI team performance nor prior user expe-
rience. Related to our proposed retraining objective is the
idea of cost-sensitive learning (Elkan 2001), where different
mistakes may cost differently; for example, false positives
may be especially costly. However, in our case, the cost also
depends on the behavior of the previous model h1.

Conclusions
We studied how updates to an AI system can affect human-
AI team performance and introduced methods and mea-
sures for characterizing and addressing the compatability
of updates. We introduced CAJA, a platform for measur-
ing the effect of AI performance and the effect of updates
on team performance. Since humans have no experience
with CAJA’s abstract game, the platform controls for hu-
man problem-solving skill, distilling the essence of mental
models and trust in one’s AI teammate. Using CAJA, we pre-
sented experiments demonstrating how an update that makes
an AI component more accurate can still lead to dimin-
ished human-AI team performance. We introduced a prac-
tical re-training objective that can improve the compatibility
of updates. Experiments across three data sets show that our
approach creates updates that are more compatible, while
maintaining high accuracy. Therefore, at the very least, a
developer can choose to deploy a more compatible model
without sacrificing performance.
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