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Abstract

In AI-assisted decision-making, effective hybrid (human-AI)
teamwork is not solely dependent on AI performance alone,
but also on its impact on human decision-making. While
prior work studies the effects of model accuracy on hu-
mans, we endeavour here to investigate the complex dynam-
ics of how both a model’s predictive performance and bias
may transfer to humans in a recommendation-aided decision
task. We consider the domain of ML-assisted hiring, where
humans—operating in a constrained selection setting—can
choose whether they wish to utilize a trained model’s in-
ferences to help select candidates from written biographies.
We conduct a large-scale user study leveraging a re-created
dataset of real bios from prior work, where humans predict
the ground truth occupation of given candidates with and
without the help of three different NLP classifiers (random,
bag-of-words, and deep neural network). Our results demon-
strate that while high-performance models significantly im-
prove human performance in a hybrid setting, some models
mitigate hybrid bias while others accentuate it. We examine
these findings through the lens of decision conformity and ob-
serve that our model architecture choices have an impact on
human-AI conformity and bias, motivating the explicit need
to assess these complex dynamics prior to deployment.

Introduction
As AI-powered decision tools are increasingly deployed in
real-world domains, a central challenge remains understand-
ing how best to design models to assist humans (Kleinberg
et al. 2018). Ergo, a growing body of literature has arisen to
study these screening or recommendation systems (Klein-
berg et al. 2019), where a ML model acts as a data filtering
mechanism to provide inferences as recommendations for a
human decision-maker (Gillies et al. 2016). These collabo-
rative settings call for a different evaluation process prior.
If the model were to operate alone, the typical evaluation
pipeline would involve measuring and reporting various pre-
dictive performance metrics (i.e. how accurate is the model
in solving the task?), as well as checks for potential biases
that may favor or disfavor groups based on sensitive at-
tributes such as gender, age, or ethnicity (i.e. does the model
exhibit lower predictive performance for a given group?)
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Figure 1: An example hybrid hiring workflow. A candidate
dataset is used to train three NLP classifiers, which each out-
puts recommendations to human decision-makers. We eval-
uate accuracy and bias of the resulting system.

(Mehrabi et al. 2021; Barocas, Hardt, and Narayanan 2017).
Both axes (performance and bias) are important for real-
world deployment and exhibit different social implications
in practice (Barocas, Hardt, and Narayanan 2017).

If the AI is instead intended to assist the human rather
than act as sole arbiter, then assessing resulting performance
involves understanding the interaction between human and
machine. When a human makes a decision with the help of
an AI recommendation, they can either bring in their own
perspectives in choosing how to utilize the model or may
choose to solve the task alone. Thus, hybrid (human-AI) per-
formance depends on how the model alters the human deci-
sion, requiring an evaluation of a different nature that looks
at how humans choose to conform to specific models.

Previous work has taken this approach in investigating
how model accuracy transfers to hybrid accuracy (Lai and
Tan 2019; Bansal et al. 2019a; Green and Chen 2019; Feng
and Boyd-Graber 2019), illustrating that although hybrid
systems designed for collaboration can improve accuracy
beyond that of the human or AI alone, high model accu-
racy does not always transfer into high hybrid accuracy (Yin,
Wortman Vaughan, and Wallach 2019). However, despite
this increasing focus on human-AI collaboration, the way
predictive bias inherent in ML models transfer to human de-
cisions is not well understood at all. Specifically, it is not
clear how biases from different model architectures would
influence human bias or whether a more biased model would
ultimately propagate to a human decision-maker at a higher
rate than a less biased one like in the case of accuracy. The
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two in combination (predictive performance and bias) re-
sult in complex dynamics that may alter how both percolate
down to a human decision-maker.

In this work, we investigate this by conducting a large-
scale study to assess how a realistic hybrid system performs
on both overall accuracy and bias (difference in predicting
male vs. female candidates). We choose the domain of hir-
ing due to a rich literature of human and algorithmic biases
documented, with the question at play being: “Do I think
this candidate is a good fit for this job?” Our human study
leverages a large-scale text dataset (De-Arteaga et al. 2019)
consisting of real candidate bios and employs three different
NLP classifiers as assistance in predicting occupation from
bio. We test how these models perform in isolation vs. when
utilized as recommendations by humans in a hybrid system.
To minimize side effects from other system properties (e.g.,
UX experience, confidence, etc.) we keep the interface pre-
sentation unchanged in all conditions and display only the
final model recommendation as an aid. Figure 1 illustrates
our hybrid experimental setup.

We make the following contributions:

1. To our knowledge, we present the first-ever experiment
studying the propagation of both algorithmic perfor-
mance and bias to human decision-making.

2. Our results reveal surprising findings, demonstrating that
some of our deployed models mitigate hybrid bias while
others propagate and increase bias (even though origi-
nal human and model biases span different regions). We
interpret these results from a human-AI conformity lens
and observe that high predictive performance from some
model types do not necessarily increase human-model
conformity, resulting in lower hybrid performance but
less biased decisions.

3. We introduce our full crowdsourced data, comprised of
38,400 individual human judgements over 9,600 predic-
tion tasks, as Hybrid Hiring: a first-ever large-scale
dataset for studying human-AI collaborative decision-
making trained, collected, and evaluated on real data.

The above contributions provide important insights pre-
viously under-studied in both human-AI collaboration and
algorithmic fairness literatures, and raise critical concerns
and trade-offs that need to be investigated prior to deploy-
ing similar models in practice, particularly since our work
revealed significant differences in model conformity, even
without an interface change. Inspired by these results, we
propose future directions in studying the impact of different
ML models in hybrid decision-making scenarios.

Related Work
Algorithmic Bias It is now more important than ever to
quantify and understand model biases that reinforce the dis-
advantaged status of different groups (Nosek and Banaji
2002; Sweeney 2013). While ML achieves higher-still accu-
racy, a key question becomes: accurate, but for whom (Baro-
cas and Selbst 2016)? Hiring, long a discriminatory practice
(Isaac, Lee, and Carnes 2009), has received specific renewed
interest due to a rise in automated decision systems deployed

with alarmingly detrimental effects towards female candi-
dates (The Guardian 2018; Raghavan et al. 2020).

Spurred by such concerns, the ML community has re-
sponded with a rapidly growing body of literature on algo-
rithmic fairness efforts. A brief overview ranges from ap-
proaches that seek to mitigate bias using techniques that
are “unaware” of protected attributes like race and gender
(Dwork et al. 2012) to more sophisticated techniques that
seek to impose fairness as a ”constraint” (Hardt, Price, and
Srebro 2016). In practice, any method that relies on pro-
tected attributes for model training stands at odds with anti-
discrimination law, which forbids the usage of these features
in model prediction, even if the purpose is to mitigate bias
(Dwork and Ilvento 2018; Gonen and Goldberg 2019).

Human Bias Complex decision tasks, limited cognitive
resources, uncertain information, and a human tendency
to aspire to reduce overall decision load together lead to
a bounded rationality model of human decision-making,
where cognitive biases come into play (Simon 1955; Cun-
ningham 2013; Kahneman 2003). These biases are best de-
scribed as heuristics, or mental shortcuts, that humans take
when evaluating large amounts of uncertain information in
a messy world (Thaler and Sunstein 2008). One particular
form of bias that has been found to be especially detrimental
is that of gender bias, particularly when evaluating candi-
dates in professional settings. There is evidence that gender
inequalities in the workplace stem, at least in part, from bi-
ased attitudes directed against women from those who hold
sexist or innate preferences for a particular gender in differ-
ent professions (Koch, D’Mello, and Sackett 2015). For in-
stance, a study found that the higher a participant scored on
a hostile sexism personality test, the more likely they were to
recommend a male candidate rather than female for a man-
agerial position (Masser and Abrams 2004).

Human-AI Collaboration The concept that decision pro-
cesses adapt over time to adjust to changing preferences
has led to preference construction, or decision-makers for-
malizing which option they prefer (Lichtenstein and Slovic
2006; Thaler and Sunstein 2008). It is of no surprise that sys-
tems designed to produce recommendations in key stages of
decision-making have been found to have immense impact
on final outcomes (Mandl et al. 2011). In these cases, the
human makes a decision to either accept or reject recom-
mendations. These AI-assisted systems have led to more ac-
curate medical diagnoses (Lundberg et al. 2018), optimized
crowdsourcing efforts (Kamar, Hacker, and Horvitz 2012),
and creative multiagent game-playing (Jadeberg et al. 2019).
Here, we refer to human-AI together as a hybrid system.

As hybrid systems are increasingly deployed, it is impor-
tant to understand their impact on human decision processes.
Many factors, such as the human’s ability to create a mental
picture of the model (Bansal et al. 2019a), their implicit trust
in the model (Yin, Wortman Vaughan, and Wallach 2019;
Zhang, Liao, and Bellamy 2020), how they are impacted by
updates (Bansal et al. 2019b), the representational display of
recommendations (Peng et al. 2019), and the interpretability
of the model (Gilpin et al. 2018) have all been demonstrated
to greatly impact humans. However, to our knowledge, there
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(a) Human-only condition. (b) Hybrid condition.

Figure 2: An example task where the true occupation is teacher and confused occupation professor. The interface remains
unchanged across all candidate slates and conditions. Additionally, recommendations do not provide any additional evidence
or signal of the underlying model behaviour (e.g. confidence, architecture, explanation for the decision, etc.).

exists no work that studies how both AI predictive perfor-
mance and bias transfer to humans.

Experimental Setup
Motivation Our work is motivated by the desire to un-
derstand how bias in algorithmic models transfer to hybrid
decision-making in realistic deployed settings where both
users of trained models and their real-world stakeholders
are impacted. Often, it is assumed that a higher-performing
model will help a human make more-accurate and less-
biased decisions, or conversely, that a human will recog-
nize model mistakes and exert agency in correcting them.
Yet, we have very little understanding of how these met-
rics trickle down through a hybrid decision pipeline. In this
work, we evaluate how different models trained on real-
world data, when integrated within common hiring pipeline
under constraints, alter final system predictive performance
and bias. Studying this allows us to better understand the
impact of this increasingly-common workflow as well as un-
earth which types of algorithmic advancements can actually
be transferred to a human-in-the-loop system.

Data Collection We select the task of language-based oc-
cupation classification due to its direct relevance to real-
world hiring scenarios (Peng et al. 2019). To a human, pre-
dicting an individual’s true occupation from a brief text de-
scription remains a common and often high-stakes decision
made in professional settings daily. We compile a corpus
of public professional bios using the same methodology as
De-Arteaga et al. by scraping online bios using the Com-
mon Crawl to re-create a dataset where all observations be-
gin with the following sequence: [name is a title] and sub-
sequently describe a professional background (De-Arteaga
et al. 2019). We extract the ground truth occupation and gen-
der of each observation and to the best of our ability, mask
out names. We select the 28 most frequently-occurring oc-
cupations, resulting in 397,907 observations of which pro-
fessor is the most frequent occupation and rapper the least.

This dataset represents a publicly-available online pool of
candidates that may be screened by a real model.

Model Training The objective is to, without access to the
first sentence of a bio which identifies occupation, predict
the ground truth using the candidate’s self-provided descrip-
tion. To isolate the impact of model architecture on hybrid
performance, we elect to train a single-layer fully-connected
deep neural network (DNN) as well as a simpler bag of
words (BOW) (De-Arteaga et al. 2019; Bolukbasi et al.
2016). For our BOW, we use a one-versus-all logistic re-
gression with L2 regularization similar with prior work (De-
Arteaga et al. 2019; Romanov et al. 2019). DNN represents a
more black-box architecture due to its non-linear nature and
deeply nested structures whereas BOW remains a good base-
line due to its general interpretability (Gilpin et al. 2018).

Because some occupations exhibit an uneven skew of ei-
ther male or female bios and we wish to de-link existing
data pipeline biases from our analysis, we create validation
and test splits such that both gender and occupation are suf-
ficiently represented. In accordance with prior work (De-
Arteaga et al. 2019; Romanov et al. 2019), we use stratified-
by-occupation splits, with 65% of the bios (258,639) desig-
nated for training, 10% (39,790 bios) designated for valida-
tion, and 25% (99,476 bios) designated for testing. This iso-
lates the differences in model performance to their varying
architectures, and allows for an equivalent apples-to-apples
comparison on resulting hybrid performance and bias.

Human Task Design We construct a constrained decision
task by presenting 8 bios, 4 of which belong to the occu-
pation of interest and ask humans to identify the correct 4
out of the 8 that belongs to that occupation. We are in ef-
fect simulating a realistic scenario where, say, a recruiter
operating under resource constraints is tasked with selecting
a subset of candidates for interviewing and may make im-
plicit judgements based on gender (The Guardian 2018). To
ensure that our slates are non-trivially difficult for humans,
we generate confusion matrices for predictions made by our

3



(a) BOW classification bias. (b) DNN classification bias.

Figure 3: DNN and BOW gender bias on the dataset test split as quantified by TPR gender gap (∆TPR) relative to true
proportion of female candidates in the dataset. While both models exhibit biases, DNN’s ∆TPRs across occupations do not
appear as extreme as BOW’s. Note that our candidate slates are generated from bios sampled from this distribution.

models and select the following 3 pairs of highly-confused
professions by gender: attorney and paralegal, surgeon and
physician, and professor and teacher. Then, to assess the po-
tentially bi-directional nature of bias (for example, a female
lawyer being misclassified as a paralegal implies something
very different than a male paralegal being misclassified as a
lawyer), we create 6 tasks from these 3 occupation pairs (i.e.
one type of slate is an attorney misclassified as a paralegal
and its counterpart a paralegal misclassified as an attorney).

For each occupation, we design candidate slates where 8
bios are randomly selected from our test split (4 from the
true occupation and 4 from the confused occupation), with
the additional constraint that gender representation remain
equal in both. This is done to enforce the opportunity to se-
lect equal subsets of “qualified” candidates, irrespective of
how they are actually represented in the world. Altogether,
we generate 200 unique slates, randomly ordered, for each
occupation to total 9,600 samples from our original dataset
(6*200*8 = 9,600 bios total to be classified by each control
group).

Evaluation To study the impact of AI recommendations
on human decision-making, we conduct a crowdsourced
study across three conditions (model-only, human-only, and
hybrid) and evaluate the following two metrics:
1. Predictive performance (true positive rate (TPR))
2. Bias (differential TPR in classifying female vs. male can-

didates (∆TPR, or TPRf - TPRm))
Note, these two axes are not the same: a system may classify
candidates successfully at a higher rate but also exhibit bias
in being more accurate for male vs. female candidates. The

ideal system is one that maximizes TPR without exhibiting
significant ∆TPR. We report TPR rather than accuracy since
we are studying constrained decision-making where the can-
didate slate size is fixed and if one classification is correct,
this necessitates that another was incorrect. This helps our
evaluation of bias (∆TPR), which is calculated as the dif-
ference in TPRs between binary gender candidates of each
occupation (De-Arteaga et al. 2019). A positive ∆TPR indi-
cates a bias towards female candidates and negative ∆TPR)
towards male. In line with previous work (Peng et al. 2019),
we formulate the task as a filtering rather than a classifica-
tion task, which allows for us to observe bias to a greater
extent since a budget is allocated for selection and not all
candidates can be prioritized (as is the case in real-world set-
tings). A biased system will exhibit a statistically significant
∆TPR (i.e. TPRf 6= TPRm) across slates.

Model-Only Condition For each of our generated candi-
date slates, AI recommendations are created by selecting the
top 4 bios that our trained DNN and BOW models have the
highest confidence in their predictions as belonging to the
ground truth occupation. This forces the same constrained
decision task that our subsequent conditions will face. In ad-
dition, we also test a “random” model, which selects its 4
bios via coin flip to serve as a non-intelligent baseline. Be-
cause we are enforcing the same subset criteria on the exact
same candidate slates, we can attribute any arising perfor-
mance differences to model type and not the task itself.

Human-Only Condition For our human-only condition,
we deploy slates as HIT tasks on mTurk (Figure 3). We show
each participant a unique slate, present a description of the
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Table 1: TPR on the same candidates slates across conditions. Pairwise compar-
isons are made between the human (base condition) and each corresponding model
to assess the performance differential. Higher TPR models (DNN and BOW) con-
sistently translate into higher TPR hybrid systems (H+DNN and H+BOW) whereas
a lower TPR model (Random) does not impede performance (H+R).

Human Rand H+R DNN H+DNN BOW H+BOW

attorney 0.60 0.51β 0.57 0.79α 0.66α 0.78α 0.70α

paralegal 0.60 0.49β 0.56 0.87α 0.68α 0.78α 0.70α

physician 0.52 0.49β 0.52 0.85α 0.61α 0.85α 0.66α

surgeon 0.61 0.51β 0.61 0.89α 0.68α 0.82α 0.74α

professor 0.59 0.51β 0.59 0.85α 0.70α 0.87α 0.75α

teacher 0.53 0.50β 0.54 0.86α 0.61α 0.87α 0.74α

α Greater than the Human condition, significant at p < 0.01. Also in yellow.
β Less than the Human condition, significant at p < 0.01. Also in green.

ground truth occupation, and ask them to select 4/8 bios that
they believe to best fit that description. We programmatically
enforce that each participant picks the correct number of se-
lections and each bio must be user-clicked as Selected or Not
Selected. Bios are randomly ordered per slate to remove pos-
sible confounding factors such as rank ordering preference
and recency bias (although final generated slates are kept
consistent between conditions). Altogether, we deploy 1,600
uniquely-generated HITs across six tested occupations.

Hybrid Condition For our hybrid condition, we follow
the same methodology as for our human-only condition but
additionally provide predictions made by our three models.
Participants are explicitly instructed that these predictions
are “recommendations” from an “AI” that they may choose
to disregard and override. For this condition, we deploy
4,800 unique HITs in total (1,600 each for human+DNN,
human+BOW, and human+Random). Note: irrespective of
the model tested, the interface remained the same and par-
ticipants could not participate in HITs across conditions.

To increase reproducibility confidence, we run all 200
slates per occupation in two batches of 100 across unique
study participant pools, each with a mix of human-only and
hybrid conditions: the first between August 23-27, 2019 and
the second between September 1-4, 2019. This is done to
ensure that demographic skews in crowdsourcing may be
mitigated across worker pools. We compensate all partici-
pants at a wage of $15 per hour. Participants are addition-
ally screened according to the following qualifications: hold
above a 95% approval rating, unique ID per condition, and
based in the United States to control for English being the
primary spoken language.

Data Ethics and Privacy For all experiments and col-
lected data, we conduct both institutional IRB and data pri-
vacy review. We also anonymize all bios (by stripping out
names and other identifying features) and participant data
(we collect no no personal or private information).

Statistical Testing In evaluating significance across con-
ditions, we are interested in seeing whether a condition (i.e.
a specific model) produces changes in hybrid performance

when compared to a baseline. We use the human-only con-
dition as our baseline for all comparisons since we are in-
terested in studying the impacts of AI on humans in this
work. We utilize Friedman and Wilcoxon signed ranks tests
to study the effect of each candidate slate across conditions
in pairwise comparisons to the human-only (base) condition.

Results
First, we examine performance of our model-only condi-
tion. We see that different models exhibit different TPRs
and biases, with BOW and DNN architectures indeed mak-
ing varied selections on the same task. Second, we turn to
the human-only condition and find that humans exhibit their
own set of biases that do not parallel either trained model.
Third, we assess the impact of recommendations on human
decision-making in our hybrid condition and find that al-
though a higher-TPR model consistently produces higher-
TPR hybrid teamwork, the impact on bias is model-specific,
with DNN mitigating human bias while BOW seemingly in-
ducing it. Last, we assess these results through the lens of
human-AI conformity and discover that high-TPR perfor-
mance from our tested non-linear model does not necessar-
ily increase human-model agreement, resulting in ultimately
lower hybrid performance but less biased decisions.

Model-Only Performance Table 1 highlights the TPRs of
human and model-only conditions. We see that DNN and
BOW do not make identical predictions across candidate
slates, with DNN generally outperforming BOW (as evi-
denced by the difference in TPRs, particularly on parale-
gal and surgeon tasks). To probe this further, we analyze
the original classifications made by both models and find
that, as shown in Figure 3, DNN and BOW exhibit differ-
ent biases (∆TPRs) across occupations. For example, BOW
∆TPR of paralegals (top right of Figure 3a) indicates both
a true high proportion of female paralegals in the dataset as
well as model bias in classifying them as such.

Human-Only Performance We next ask the question: do
human predictions resemble that of either model? Across
both TPR and ∆TPR evaluations, we find that human-only
decisions do not overlap with those from either BOW or
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Table 2: Bias (∆TPR) across conditions for tested occupations. Within each slate,
we conduct a pairwise comparison between TPRf and TPRm to see whether a
significant difference is present. If so, that condition exhibits a significant ∆TPR.

Human Rand H+R DNN H+DNN BOW H+BOW
attorney -0.02 -0.04 -0.02 -0.04 -0.03 -0.06 -0.03
paralegal 0.09* 0.03 0.07 0.11* 0.03 0.23* 0.15*

physician -0.02 0.02 -0.00 0.09* -0.00 0.05 0.06
surgeon -0.06 -0.04 -0.13* -0.07* -0.03 -0.16* -0.16*

professor 0.02 0.04 0.00 -0.04 -0.03 -0.06 -0.03
teacher 0.10* -0.03 0.03 0.03 0.02 0.04 0.07

* TPRf 6=TPRm, significant at p < 0.01. Also in pink.

DNN-only predictions at different rates, thus removing the
possible confounder that one model aligned with original
human decisions more than the other (details can be found
in Appendix). Table 1 shows that the human-only condition
significantly under-performs both DNN and BOW models
on all occupation slates, although in most cases does per-
form higher than Random. Moreover, Table 2 illustrates dif-
ferent biases across different conditions, with DNN not ex-
hibiting any significant bias across all occupations, BOW
biased towards female paralegals and male surgeons, and
humans biased towards female paralegals and teachers.

Model-Specific Impact On Hybrid TPR When assess-
ing the impact of model TPR on hybrid decision-making,
we find that human decision-makers collaborating with a
higher TPR model (DNN and BOW) results in a consis-
tently significant improvement across all occupations. This
is in accordance with previous work, which has observed
that higher-accuracy models generally help lower-accuracy
humans (Bansal et al. 2019a, 2021), although this is still
far from achieving optimal complementarity. Interestingly,
when humans collaborate with a lower TPR model (Ran-
dom), their own performance is not impeded (Table 1).

Model-Specific Impact On Hybrid ∆TPR A different
story emerges when evaluating the impact of model ∆TPR
on hybrid decision-making, with different models impacting
resulting biases differently. When humans collaborate with
DNN, the resulting system (irrespective of any human biases
at play) becomes unbiased. Table 2 illustrates how the orig-
inally biased occupations of paralegal and teacher become
both mitigated by an unbiased DNN. However, an opposite
effect can be seen in humans collaborating with BOW, with
the resulting system seemingly reflecting both human-only
and model-only biases. For example, despite the original hu-
man being unbiased in the surgeon task, the resulting hy-
brid system is pulled towards a significant bias towards male
candidates. Figure 4 analyzes this result in greater detail
using the surgeon task as an illustration. Note that the key
point is not only that the DNN-hybrid system is ultimately
less biased than the BOW-hybrid (lower hybrid ∆TPR), but
that the resulting system is pulled below the interpolated ex-
pected (blue) line between Human and DNN performance
gains towards the fully unbiased (grey) line, whereas the
BOW-hybrid is pulled above the interpolated (red) line to-

Figure 4: A visual of bias within the surgeon task, plotted
again female (x-axis) and male (y-axis) TPRs. The center
(grey) line represents an unbiased model. The bottom left
represents a less accurate model, and the top right more ac-
curate. Interpolation (dotted) lines are drawn to represent the
expected trendline if no consistent difference across hybrid
conditions existed. We see that DNN helps mitigate human
bias (the resulting hybrid ∆TPR is close to the unbiased
line) whereas BOW appears to actually induce bias (result-
ing in a hybrid ∆TPR farther from the line).

wards a more biased direction. Visually, this helps differen-
tiate between bias mitigation that may result from perfor-
mance gains of a higher-performing model and highlights
differences between how bias percolates differently from a
DNN vs. BOW model down to a human.

Investigating Conformity Why do we see very different
results for model-specific impacts on TPR vs. ∆TPR hy-
brid decision-making, even without an interface change? To
better understand a sample-by-sample breakdown, we inves-
tigate human-AI conformity, or the rate at which a human
appears to follow the model’s recommendations in a hybrid
system. We compute this by assessing the percentage of hy-
brid decisions that match those of original model decisions
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Table 3: Hybrid decisions that match original model deci-
sions, conditioned on the model being incorrect, i.e. when
does a human accept a wrong prediction? Here, H+Random
serves as a baseline for understanding the additional confor-
mity to a specific architecture beyond blind acceptance of AI
recommendations themselves. We observe that humans are
significantly more likely to conform to incorrect BOW deci-
sions relative to DNN, which rarely differs from Random.

H+Random H+DNN H+BOW

attorney 0.622 0.663 0.744*

paralegal 0.629 0.634 0.716*

physician 0.673 0.648 0.782*

surgeon 0.561 0.645* 0.809*

professor 0.605 0.504 0.704*

teacher 0.606 0.623 0.804*

* Greater than H+Random when the model is in-
correct, significant at p < 0.01. Also in blue.

for each candidate slate (irrespective of whether that clas-
sification was the ground truth or not). Figure 5 illustrates
that although we see similar conformity rates of the human
to DNN, humans conform significantly more to BOW pre-
dictions than either DNN or Random. Moreover, this distinc-
tion is especially apparent in cases where the model made an
incorrect prediction (Table 3). A possible explanation, sup-
ported by past work, posits that BOW is a generally more
interpretable model that humans can understand (and trust)
more (De-Arteaga et al. 2019). Because BOW word asso-
ciations are learned by encoding sparse vectors that map
to word vocabularies in a manner that is thought of to be
more linear, humans are able to formulate an internal under-
standing of its recommendations more readily than DNN (a
black-box non-linear model) or Random (complete chance)
(Bansal et al. 2019a; Poursabzi-Sangdeh et al. 2021). In fact,
based on Table 2 we observe that despite the lower hybrid
performance of the Random model, random recommenda-
tions appear to have similar effects to the DNN on mitigat-
ing mitigating bias. As a result, humans may be more willing
to accept the inferences provided by BOW (even when those
recommendations are biased) and conform to its predictions,
particularly when operating under resource constraints.

Discussion
Impact on Model Deployment A natural question that
arises from these findings is whether DNN and Random
(which both appear to be uninterpretable models) help mit-
igate human biases because they force human decision-
makers to self-reflect more, and if so, whether ML deploy-
ment should actually prioritize this objective in future sys-
tem design where minimizing bias may be a priority. To do
so would mean an orthogonal departure from current work,
where system designers are seeking less biased and more in-
terpretable models. Moreover, our H+BOW was more accu-
rate than our H+DNN, posing a trade-off between high team
accuracy vs. low team bias. Our recommendation is that,
while our results are somewhat surprising and highlight the

Table 4: Prediction overlap between the human-only and
model-only conditions, i.e. what percentage of the origi-
nal human decisions matched those of each model? Al-
though we see higher human overlap with DNN and BOW
vs. Random (likely due to Random being a generally lower-
performing model that operates by chance), there is no sig-
nificant difference between DNN vs. BOW. This helps as-
suage concerns regarding one model resembling human rea-
soning more than another prior to deployment in the task.

Random DNN BOW

attorney 0.511 0.589* 0.608*

paralegal 0.498 0.583* 0.570*

physician 0.501 0.510 0.526*

surgeon 0.485 0.599* 0.575*

professor 0.510 0.554* 0.570*

teacher 0.516 0.531* 0.526*

* Greater than Random, significant at
p < 0.01. Also in green.

importance of studying real-world hybrid decision-making,
deploying a less interpretable model serves as a shortcut to
true bias mitigation. As a community, we should seek to dis-
cover mechanisms that achieve this more explicitly and ef-
ficiently to truly leverage the complementary strengths of
improved algorithmic design. Examples may include requir-
ing humans to follow explicit forms of self-reflection and
decision justification when there exists a a risk of bias.

Dataset Release We introduce our full experimental data
as Hybrid Hiring, a large-scale dataset for studying human-
AI decision-making that is collected and evaluated on real-
world candidates. Comprised of 38,400 human judgements
over 9,600 unique prediction tasks across seven conditions,
our dataset represents a first of its kind released to study hu-
man decision-making in the loop utilizing trained ML infer-
ences. Ideally, hiring (and other high-stakes social decisions)
should always remain in the purview of human review, and
so utilizing datasets and methodologies of this kind will al-
low the field to investigate the impacts of different research
questions on human decision-making in these contexts. Al-
though we specifically investigated hybrid performance of
three NLP models, one can easily extend this work to alter-
nate architectures and interfaces.

Limitations While we do our best to simulate a realistic
hybrid task by selecting a socially relevant domain where
real human data is incorporated in the decision-making of
human study participants, we recognize that we are still run-
ning a controlled study on mTurk, where transfer of results
to real-world deployed systems may be limited. Moreover,
we greatly simplify many potential confounders (such as
age, presence of non-binary gender, and self-written biog-
raphy variance) in isolating bias to a single variable. We
also do not study state-of-the-art de-biased models due to
more complex architectures and leave for future work. We
hope that our work moves the needle more in the direction
of studying the impacts of ML-aided systems in real-world
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Figure 5: Conformity rate (percentage of hybrid decisions
that match those predicted by the model alone) across
tested occupations. We see significantly higher conformity
to BOW than to DNN and Random predictions, with high-
lighted bands detailing 95% confidence intervals.

environments and propose that the community jointly invest
in producing similar large-scale decision tasks and datasets
to further study such intricacies across varied domains.

Conclusion
In asking the question of how model performance impacts
human decision-making on two axes, our findings open
up additional questions related to the specificity of human
responses to different models, even without an interface
change. Our results motivate the explicit need to further in-
vestigate the observed signals regarding differing human in-
tuitions of varied model architectures and how we can best
design systems that allow for optimal hybrid collaboration.
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